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I. INTRODUCTION

The general problem of coupling through apertures has many specific
applications, such as apertures in a conducting screen, waveguide-fed
apertures, cavity-fed apertures, waveguide-to-waveguide coupling, waveguide-
to-cavity coupling and cavity-to-cavity coupling. The literature on these
problems is extensive. Mgy books, of which [1] to f3] are typical, dis-

cuss the problem and give references to some of th«: literature.

This report formulates the problem in terms of a moment solution of
the operator equation. An application of the equivalence principle sepa-
rates the problem into two parts, namely, the regicns op each side of the
apcrture. The only coupling 18 through the apertnre., whose characteristics
can be expressed by aperture admittance matrices, one for each region. These
admittance matrices depend only on the region being considered, being inde-
pendent of the other region. The aperture coupling is then expressible as
the sum vf the two independent aperture admittance matrices, with socurce
terms related to the incident magnetic field. This result can be inter-
preted in terms of generalized networks as two n-port networks connected in
parallel with current sources. The resultant solution is equivaleat to an

n~-term variational solution.

Since the problem is divided into two mutually exclusive paris, one
can separately solve a few canonical problems, such as apertures in con-

ducting screens, in waveguides, and in cavities, and then combine them in

the various permutations mentioned above. Computer programs can be de-
veloped for treating broad classes of canonical problems, such as apertures
of arbitrary shape in conducting planes, in square waveguides, and in rec-

tangular cavities. Such programs can then serve as brecad and versatile

[1] R. E. Collin, "Field Theory of Guided Waves," McGraw-Hill Bock Company,
New York, 1950.

{2] R. F. Harrington, ''Time-Harmonic Electromagnetic Fields," McGraw-Hill
Book Company, New York, 1991.

[3] N. Amitay, V. (alindo, C. P. Wu, "Theory and Analysis of Phased Array
Antennas," Wiley-Interscience, New York, 1972.
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tools for designing electromagnetic networks with aperture coupling.

II. GENERAL FORMULATION

Figure 1 reprasents the general problem of aperture coupling between
two regions, called region a and region b. In region a there are impressed
sources g}, g}, and region b is assumed source free. The more general case
of sources in both region a and region b can be treated as the superposition
of two problems, one with sources in rzgion a only, plus one with sources in
regiou b only. Each region of Fig. 1 is shownu to be bounded by an electric

coiductor, although other types of electromagnetic isolation may be used.

Region a is shown closed and region b is shown open to infinity, although each

region may be open or closed. The equivalence principle [2, Sec. 3-5] is used

to divide the problem into two equivalent problems, ae shown in Fig, 2. In

region a, the field is produced by the sources Ji, E}, plus the equivalent

~r

magnetic current

gm0k @
over the aperture region, with the aperture covered by an electric con-
ductor. In region b, the field is prodhced by the equivalent magnetic cur-
rent -M over the aperture region, with the aperture covered by an electric
conductor. The fact that the equivalent current in region a is +M and that
in region b is -M ensures that the tangential component of electric field
is continuous across the aperture. The remaining boundary condition to be

applied is continuity of the tangential component of magnetic field acrose

the aperture.

The tangential componont of magnetic field in regiom a over the aper-
ture, denoted E:, is the sum of that due to the impressed sources, denoted
i a
Et’ plus that due to the equivalent sources g, denoted‘gt(y), that is

a i a
el i @

Note that H: and E:(ﬁ) are both computed with a conductor covering the
aperture. A similar equation holds for region b, except that the equiva-
lent sources ~M are the only sources. Hence, the tangential component of

magnetic field in region b over the aperture is

b b
H =B = - B0 3)

e

%
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where B:(!Q is computed with a conductor covering the aperture. The
last equality in (3) is a comsequence of the linearity of the Hb operator.

~t
The true solution is obtained when E: of (2) equals Etb of (3), or

EQ) + R = - ®)

This is the basic operator equation for determining the equivalent mag-
netic current M,

If (4) were satisfied exactly, we would have the ¢rue solution.
We use the method of mments [4] to obtain an approximate solution. De-
fine a set of expansion fimctions {‘}‘in, n=1,2,...,N}, and let

=LV )
n

where the coefficients Vu are to be determined. Substitute (5) into (4)

and us¢ the linearity of the E&: operators to obtain
a b i
AN RESRA A RERY 5 ©
Next, define a symmetric product
¢
<A,B> = J A Bds (7

apert.
and a set of testing functions {‘Wm, n=1,2,...,N}, which may or may not be
equal to the expansion functions. We take the symmetric product of (6)
with each testing function E«n’ and use the linearity of the symmetric

product to obtain the set of equations
Z V <W Ha(M >+ 2 V <W Hb(M )> = - <y Hi> 3)
oon m’ "t n o n m’ t n m’t

m=1,2,...,N. Solution of this set of linear equations deteruines the
coefficients Vn and the magnetic current M according to (5). Once M
is known, the fields and field-related parameters may be romputed by

standard methods.

[4] R. F. Harrington, "Field Computation by Mument Methods," Macmillan
Company, New Yoirk, 19643.
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The above solution can be put into matrix notatien as follows:

Define an admittance matrix for region a as

[Y°) = [<=W HZ00)>] (9

and an admittance matrix for region b as

[¥] = [<--wm,nlz(un)>]NxN (i)

The minus signs are placed in (9) and (10) on the basis of power con-

siderations. Define a source vector

A |
il O i N (11)
and a coefficient vector
>
V= IV 1 (12)
Now the matrix equation equivalent to equations (8) is
¥ + P50 = 14 (13)

This can be interpreted in terms of generalized networks as two networks
[Ya] and [Yb] in parallel with the current source fi, as shown in Fig. 3.
The resultant voltage vector

b]—lfi

V=[Y2+Y (14)

is then the vector of coefficients which give M according to (5).

It is important tc note that computation of [Ya] involves only region
a, and computation of [Yb] involves only region b. Hence, we have divided
the problem into two parts, each of which may be fcrmulated independently.
Once [Y] is computed for one region, it may be combined with [Y] for any
other region, making it useful for a wide range of problems. For example,
the same aperture admittance matrix for radiation into half-:nace would be
useful for plane-wave excitation of the aperture, waveguide excitation,

and cavity excitation.

R NDEw
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III. LINEAR MEASUREMENT

A linear measurement is defined as a number which depends linearly
on the source. Examples of linear measurements are components of the
field at a point, voltage along a given contour, and current crossing a
given surface. Measurements made in region b will depend linearly only on
the equivalent current-i& Measurements made in region a will depend
linearly on the impressed sources g}, g}, as well as on the equivalent cur~

rent M. We now illustrate these concepts with a particular example.

Consider the measurement (computation) of a component H.m of magnetic
field at a point x in region b. It is known that this component can be
obtained by placing a magnetic dipole K&m ac r » and applying the reciprocity
theorem to its field and to the original field [2, Sec. 3-8]. The original
field in region b is given by the solution to Fig. 2b. The problem involving
the magnetic dipole, called the adjoint problem, is shown in Fig. 4. Appli~

cation of the reciprocity theorem to these two cases yilelds

HK, = - ” M - Hds (15)
m nm Py ~

apert.

Here g? is the magnetic field from K&m in the presence of a complete con-
ductor, and Hm is the component in the direction of K&m of the magnetic
field at Es due to M in the presence of a complete conductor. To evaluate
(15), substitute for M from (5) and obtain

HKe = ﬁ Vn<—Mn,Hm> (16)

This can be written in matrix form as

'

HKL = i (17)

where I 1s the transpose of a measurenent vector
i = ) H M i
[< Mn’ >1Nx1 (18)

Note that the elements of I" are similar in form to those of“ii given
by (11), except that Tﬁn replaces H&. The minus sign difference reflects

-9~
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the fact that the equivalent source in region b is -M, in contrast to
that in region a which is #{. Now substitute (14) into (17) to ob-
tain

HKL = ™y + v (19)

If the magnetic dipole is cf umit moment, then (19) gives Hm at I
directly.

Every linear measurement in region b will be of the form (19).
For example, 1f a component of E at I, vere desired, we would place an
electric dipole at o and apply reciprocity. In general, a linear
measurement involves applying reciprocity to the original problem and
to an adjoint problem. A determination of the sources of the adjoint
problem is a part of the formulation of the problem.

If a linear measurement is made in region a, it will involve a
contribution from the impressed sources g}, !} added to that from the

equivalent sources M. For example, instead of (19) we would have
HKe = HKe + IP[v® + yP17 1 (29)
m m m m

where H: is the magnetic field from g}, 5} in the presence of a complete

conductor. Also, in region a we would define the measurement vector to
be

™. [<Mh,Hm>] (21)

Nx1

instead of (18), because the egquivalent sources are-ﬁi.in region a in
contrast to -M in region b. Note that it is the difference field gfgf
in region a (due to M) that is directly analogous to the transmitted
field H in region b (due to -M).

IV. TRANSMITTED POWER

A quadratic measurement is one which depends quadratically on the
sources. Examples of quadratic measurements are components of the Poynting
vector at a point, power crossing a given surface, and energy within a

given region. A particular quadratic measurement of considerable interest

-10-




is the power transmitted through the aperture, which we now consider.

The complex power Pt transmitted through the aperture is basically

o

%*
pt- ” ExH:+ nds (22)
apert.

where the asterisk denotes complex conjugate., Substituting from (1), we
have '
*
P, = ” M * Hds (23
apert.

This involves only the tangential component of H, which in regiocn b we
denoted by Ei(jg). For M we use the linear combination (5) and obtain

b b ..

H () = - Z v H Qi) (24)
Substituting this for _P:_and (5) for ‘hi into (23), we obtain

* ( b*
Pt=—£§VmVn IJ Mo (M )ds (25)

apert,

If Em are real, the conjugate operations can be taken outside the inte-

grals. Moreover, if Hm = W (Galerkin's method), then the negative of
' %

the integrals in (25) are Ymn as defined by (10), anc

* bk

B I W (26)
mn
This can be written in matrix form as
= *pk
P = FryP)V (27)

Note that this is the usual formula for power into network [Yb] of Fig. 3.

V. APERTURES IN PLANE CONDUCTORS

Consider a conducting plane covering the z=0 plane except for an
aperture, as shown in Fig. 5. The two regions z>0 and 2<0 are identical
half spaces, and hence their admittance matrices are the same. Therefore,

we let

-11-
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[¥2 + YP] = 2[¥"8) (28)

where [Yhsl denotes the aperture admittance for the aperture opening into
half space, say z>0. When the aperture is covered by a conductor, the

z=0 plane is a complete conducting plane, and image theory appliesr. The
magnetic current expension functions are on the surface of the z=0 plane.
Their images are equal to them and are alsn on the z=0 plane [2, Sec. 3-6].
The result is that [Yhs] is the admittance matrix obtained using expansion
functions 2§n radiating into free space everywhere. This problem is dual

to that for the impedance matrix of a plane conductor, a problem considered
recently in the literature [5].

The original excitation of the aperture is by the impressed sources
g}, g} in the reglon z<0., The impressed field E: used in the operator
equation (4) is the tangential magnetic field due to g}, g} with the aper-
ture covered by a conductor (Fig. 2a). In this case the z=0 plane is a
complete ccnductor, and image theory again applies. The result 1s that
the tangential component of H over the z=0 plane when it 1s covered by a

ronductor is just twice what it is for the same sources in free space.

Hence,

i io
Et Zﬂt (29)

where ﬂio is the tangential component of the magnetic field over the

aperture due to the sources g}, g} in free space. The components of
the excitation vector fi defined by (11) are now

i io
Im 2 JI Eh Ht ds (30)
apert.

where Eh is the mth testing functiom.

A case of special Interest is that of plane wave excitation. A

unit plane wave is given by

[5] N. N. Wang, J. H. Richmond, M. C. Gilreath, "Sinusoidal Reaction
Formulation for Radiation and Scattering from Conducting Surfaces,"

IEEE Trans. on Antennas and Propagation, vol. AP-23, No. 3, pp. 376~
382, May 1975.

-13~
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where ' is a unit vector specifying the direction of E}o’ 51 is the

propagation vector of magnitude 2w/)A and pointing in the directiom of
propagation, and r is the radius vector to an arbitrary field point.
These vectors are shown in Fig. 5. The components (30) of the plane-

wave excitation vector are then

-k, - r
p; =2 Jf R e (32)

apert.
L}

The symbol fi has been used for this particular vector to distinguish

it from the more general excitation vector (30).

Similar simplifications apply to the adjoint (measurement)
problem. For the evaluation of a component of magnetic field at a
point Lo @ magnetic dipole K&m is placed at the measurement point e
This radiates in the presence of a complete conductor aver the z=0
plane, and hence, analogous to (29), we have

m mo
gt zgt (33)

Here ﬂ: denotes the tangential component of H over the aperture from

K&m when the z=0 plane 18 covered by a conductor, and E:o denotes that

from K&m wher. it radiates into free space. The components of the measure-~

ment vector I° defined by (18) are now

ma=-2 JJ M - H Y%s (34)
n g 8

~t
apert.

vhere Hn is the nth expansion function.

A case of special interest is that of far—-field measurement.
Thiz is obtained by a procedure dual to that used for radiation and scat-

tering from conducting wires [6]. To obtain a component of H on the

radiation sphere, we take a source K&m perpendicular to I and let LI

{6] R. F. Harrington, "Matrix Methods for Field Problems," Proc. IEEE,
vol. 55 No. 2, pp. 136-149, February 1967.

=




At the same time we adjust Klm so that it produces a unit plane wave

in the vicinity of the origin. The required dipcle moment is given *,

-jkr
1 - ~Jue 3 m
sz 4ﬂrm € (3%

and the plane-wave field it produces in the vicinity of the origin is

0 t E
ET =y e (36)
Here . is a vnit vector ir the direction of E?o’ Em is the propagation
vector, and r is the radius vector to an arbitrary field point. Again
these vectors are shown in Fig. 5. The components (34) of the far-field

measurement vector are then

o “3k, £
p--z” M ~u e 2 “4s 37)
n ~n

apert.

The symbol P™ is used for this particular measurement vector to dis-
tinguish it from the more general measurement vector (34). The far-
zone magnetic field is now given by (19) with Kz given by (35),
™. ?m T fi and the aperture admittance given by (28). Hence

_ -jkr .
H o= —837%5- e = W gmyhs Izl (38)
m

The usual two radiation components He and H¢ are obtained by orienting
K&m in the ¢ and ¢ directions, respectively.

A parameter gometimes used to express the transmission character-
istics of an aperture is the transmigsion cross section t. It is de-
fined as that area for which the incident wave contains sufficient power
to produce the radiation field Hm by omnidirectional radiation over half

space. For unit incident magnetic field, this is

2 2
T = 2nrm|Hm| 39

“15-
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Substituting from (38), we obtair
m2e2 hg,-121,2
R oal b bl e B (40)

Note that t depends upon the polarization and direction of the incident
wave (via ?i), and upon the polarization measured and direction to the

measurement point (via fm).

Another parameter used to express the transmission characteristics

of an aperture is the transmission coefficient T, defined as

Ptrans
T o =802 (41)
P
inc.

where Ptrans is the time-average power transmitted by the aperture,

and Pinc is the free space power incident on the aperture. The inci-

dent power is

Pinc. =nS cos einc‘ (42)
where n = ¢u7e is the intrinsic impedance of free space, S is the
aperture area, and einc is the angle between &1 and n. The trans-
mitted power ia3

Ptrans. - Re(Pt) (43)
where Re(Pt) denotes the real part of Pt’ given by (27) with
[YP] = [Yhs]. Hence
1 hs _ #2*
e . Re(¥[Y°1'V) (44)

‘Jote that T depends on both the direction of incidence and on the

polarization of the incident wave.

Finally, berause of symmetry about th= z=0 plane, the difference
field ﬂfﬂ} which exists in the region 2<0 is simply related to the
transmitted field which exists in the regaon z>0. The difference field

-16-




’

:
i
]
!

in the region 2<0 is produced by an equivalent current M on a plane
ccnductor over the z=0 plane. By image theory, it is also the field
produced in the region z<0 by the source 2l in free space. As noted
earlier, the transmitted field in the region z>0 is produced by the
source -2¥ in free space. Hence, the difference field in the region
z<0 and the negative of the transmitted field in the region 2z>0 are
both produced by the same magnetic current 2M radiating in free space.
In other words, the difference field is the negrtive of the analytic
continuation of the transmitted field into the region z<0. This
applies to electric fields as well as to magnetic fields.

VI. WAVEGUIDE-FED APERTURES

Consider now a uniform waveguide feeding an aperture in a con-
ducting plane, as shown in Fig. 6. In general, the aperture may be of
diffe~ent size and shape than the waveguide cross section. The half-
space region 2z>0 is the same as in the previous problem, Fig. 5, and
the analysis of the preceding section applies. An analysis of the
waveguide region is given below.

Let the excitation of the waveguide be a source which produces a
single mode, of unit amplitude, incident on the aperture. This mode
(usually the dominant mode) is denoted by f:he index o, The field tan-
gential to the z~direction can then be expressed in modal form as
{2, Sec. 8-1]

(45)

It is assumed that all modes, TE and ™, are included in the summation.

The Y4 are modal propagation constants

18, = Jk 71 -~ (l/li)2 A<y
Yy ® (46)
ai = ki vl - (Ai/A)2 A Ai
-17-
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vwhere Xi is the i-th mode cut-off wavelength, and ki = ZW/Ai is the

i-th mode cut-off wavenumber. The Y, are the modal characteristic

i
admi ttances
Yi/]wu TE modes
V =
jwe/yi T modes

Po is the reflection coefficient for the o~th mode, and Pi is the

complex amplitude of the -z traveling component of the i-th mode.
The g are normalized modal vectors, so that the modal orthozonality

relationships are
i43

IJ e Egde = (48)
guide 1 i=]

where the integration is over the waveguide cross section.

To evaluate the aperture admittance (9) in the waveguide region,
we consider a single expansion function Hn on the z=0 plare in the
waveguide region. The tangential field produced by En wiil be of the

form (45), except that there is no incident wave. Hence, this field
is

a Y:lz
Et(nn) = g Ani € si
(49)
a Yiz
Iit(}Jn)s-gAniYie L=

where the Aui acre modal amplitudes. At 2=0 we have

a
%

M =u x
ML ez

= Z A u xe (50)
2=0 1

Multiply each side of this equation scalarly by u, X Ej and integrate

over the waveguide cross section, obtaining

* = \ L)
” A R ” X8 " Gy xgylee OD
guide guide

-19-
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By orthogonality (48), all terms of the summation are zero except the
i=j term. Hence,

Ani - II Eh Ty X gids (52)
apert.
We have replaced the integral over the waveguide cross section by one

over the aperture, since En exists only in the aperture region. The

elements of the aperture admittance matrix (9) are ncw given by

wg _ L
Ym ” Em Et(yn) ds (53)

apert.

where the superscript wg denotes waveguide. The E: of (53) is given by

the second equation of (49) evaluated at z=0, or

vg _ .
Ymn E AhiYi [I Em g x Eids (54)
apert.
Now define the constants
et | fm s 2
apert.

which are similar in form to the Ani of (52). The elements (54) then

are given by
vwg -
7 § A (56)

Hence, all elements of the waveguide admittance matrix [ngl are linear

combinations of the modal characteristic admittances Yi' For Galerkin's
are equal.

method, E; = Eﬁ and the éh and En

i

We next evaluate the eq. valent magnetic current M, given by (5).

e

The incident field is given by the first term on the right-hand side
of (45). When the aperture is covered by a conductor, the waveguide
is terminated by a conducting plane. According to image theory, the
tangential magnetic field at z=0 is then just twice the incident wave,

or

=20~
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i . X
e = 2%, * % (s
This is the g: used in 711) to evaluate the excitation vector fi. Eence,

the components of the excitation vector are

i

Im = 2Yo II E; “y, x gods = ZYOBmo (58)

apert.

The total aperture admittance matrix is

[¥® + Y°] = [¥"8 + Y8 (59)

where [Y'8] 1s the waveguide aperture admittance and [Yhs] is the half-
space aperture admittance. The coefficient matrix V s given by (14)

with the admittance matrix given by (59), or

¥ = [Y¥8 4+ yP8y 1t (60)

Finally, the equivalent magnetic current ¥ is given by (5) where the

coefficients Vn are the components of 3.

Once M is found, the modal amplitudes I, in {45) can be evaluated

i
from (1) and the orthogonality properties of the modes. From (1) and

(45), we have

E{‘::u b 4

3 %K (6

"Lty gy
z=0 o

Now multiply each side scalarly by u, Ej and integrate over the wave-
guide cross section. By the orthogonality relationships (48), all terms

of the summation vanish except the term i-j, The result is

1+T7T 1i=0
II M+.u xeds= ° (62)

guide Pi 140

Here the irtegration over the guide can be changed to that over the
aperture because M = 0 except in the aperture. Substituting for£1
from (5) into (62), and using the definitiona (52), we have
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JVA =14+T
n no o
n
(63)
v =
L VnAn1 I'1 140
n
Finally, by defining modal measurement vectors as
Ki = Aydea (64)
and using (60), we can write (63) as
1471 =K [Y'8+ weigt (65)
and, for 1 # 0,
r, = K [v"8 + yhoy i (66)
The parameter of most interest is Po, the reflection coefficient of the

incident mode. This is often expressed in terms of an admittance

1- Fo
T “TFT_ % 7

which is the equivalent aperture admittance seen by the incident mode.

The region z>0 for waveguide~fed apertures is the same half-space
region as existed in the previous problem of an aperture in a conducting
plane. Hence, evaluation of the fields in terms cf M in this region is

done the same way as in Section V. For example, the 4 conponent of the

far-zone magnetic field at a point I is given by

- -jkr s
H = Z%%E R AL Gt M (68)
m

which is (38) with the term [ZYhS]-LI:i replaced by (60). The excita-

tion vector fi has elements given by (58), and the far-field measurement
vector P has elements given by (37). The power gain pattern is the ratio
of the radiation intensiry irn a given direciion to the radlation intensity




which would exist if the total power Pt were radiated uniformly over half
space, or

2 2
2nrmn|Hm|

G = “Re® ﬂ’c (69)

Substituting for H,m from (68), we have

w2 2
G €

hs,-1212 |
= BiRe (P e o (70)

) [B7[YY8 + v
t

where Pt is given by (27). Note that this gain is a function of the

H component measured, as well as direction to the field point.

VII. DISCUSSION

A general rforrulaticn for aperture problems using the method of
monents has b2en given. The solution is expressed in terms of aperture
admittance matrices, one fo. each region. While the exposition has
been written in terms of a single aperture the formulation applies
equally well to multiple apertures. The extension of the theory to
several regions is also relatively straightforward. An example of
this more general case i1: many waveguldes radiating into half space, a
problem treated by Galindo and Wu [3]. Another example is a coaxial line
feeding a cavity, which in turn radiates into half space through an aper- i
ture. In this case the generalized network equivalent would be a network
representing the cavity, connected through some ports to a network repre-
senting the coaxial line, and connected through other ports to a network

representing half space.

Explicit formulations have been given for two problems, that of an
aperture in a conducting plane with plane-wave excitation, &nd that of a
wavegulde feeding an aperture in a conducting plane. General computer
programs have been developed for rectangular apertures in conducting
planee, and for rectangular apertures in rectangular waveguides. These
programs will be described in future reports. It is also planned to

apply the general theory to develop computer programs for rectangular

&9 Y=




apertures in rectangular cavities. We will then have programs which can
be used for computing the behavior of rectangular apertures coupling two
regions which are any permutation of these three cases. Other applica- i
tions of the general theory, such as to apertures and cavities of arbitrary j

shape, and to multiple aperture problems, are contemplated for future work.
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